
Intentional Programming:
Asymptotic Fun?

Charles Simonyi
Microsoft

charless@microsoft.com

This note is based on Gregor Kiczales’ position paper on Aspect-Oriented Programming:
“AOP, The Fun has Just Begun”. I am a big fan of AOP. It has working and useful
examples, and it brings into focus a key fault of traditional languages and OOP in
particular, namely that modularity or refinement by itself can provide for a proper
separation of concerns. It can not. Gregor describes the false hope of the traditionalists
this way: “Many people … suggest …[that such concerns] could be modularized in other
ways including the use of patterns, reflection, of ‘careful coding’.” I can also testify that
this happens, especially the “careful coding” exhortation which is used frequently by
language designers and by management to tell programmers that if the software is
difficult to modify or difficult to share, the problem is with them – their coding must be
obviously below par, since the language that they must use (ADA, Java, Modula, etc.)
has many advertised features that support modularity.

The strange thing is that programmers actually buy into this nonsense and frequently feel
guilty – programmers in this instance are a little like many end-users of beta software
who feel that the system crashes are due to their abuse of the software or lack of
understanding of how to use it, not a fault in the software that needs to be fixed. Such
beta-testers find an enthusiastic audience in the lazy programmers who loathe fixing the
problems, which completes the parallel, because language designers and management are
also very conservative folk and rather ascribe the undeniable problems to someone else.

The differences between Aspect Oriented Programming (AOP) and Intentional
programming (IP) are due to their different foci: AOP looks at programs and seeks
“cross-cutting aspects” which localize the expression of that aspect with all the benefits
that such localization affords. IP, on the other hand, looks at the specs, the stakeholders’
concerns and strives to faithfully represent those concerns in an essentially XML
tree/graph like form. It is understood that in such systems the source – that is the
summary of the stakeholders’ contributions – is viewed in any number of display
projections, so the issue of syntax or notation is orthogonal to the main issue of what is
being represented. It is also understood that the implementation is generated by a
“compiler”, “weaver” or transformer which, in case of AOP somehow has knowledge of
the aspects and in case of IP has knowledge of the “intentions”, that is the generic
parameterized nomenclature in which the specs were expressed, using the terms of the
problem domain.

Almost by definition, the stakeholders would express their contributions in terms of
crosscutting concerns, whenever a concern has effects on multiple parts of the
implementation. One could say that IP is an extreme form of AOP: in IP everything is an
aspect and everything presents a task for the aspect weaver. Another way to say this is
that IP focuses on the original expression of the problem, while AOP (in a pragmatic
way) focuses on the programmatically encoded expression of the problem and attempts to
improve it.

The greatest effect of this difference in focus is in the size of the vocabulary. First a
definition. Traditional computer languages distinguished between two kinds of words –
those that were “part of the language” and were defined in the manual and those that were
defined by the user. The former were called “keywords”, and sometimes “operators”. The
latter were called “names”.

I define “vocabulary” to be similar to natural language – it is the set of distinct identities
that are familiar to those who need to communicate – in this case the stakeholders and the
transformation system (or, if you will, the human creators of the transformation system.)
We must be careful not to get confused by homonyms and the like. It is irrelevant that a
word in English might have several meanings – those who wish to communicate must be
familiar with every relevant meaning – that have distinct identities. For example, the
word “form” is merely an English notation for a verb and several nouns that are listed in
a dictionary as form(1), form(2), and so on.

Clearly, in a traditional computer language, the vocabulary consists of the keywords. In
AOP, the number of keywords in increased to reflect the aspects that the system can
process. In IP, the vocabulary is expanded as necessary to precisely record the
stakeholders’ concerns. The distinction between keywords, operators, and names is
greatly reduced. The size of the vocabulary depends on the state-of-the-art in the problem
domain, hence it may be very large indeed.

Traditional languages are based on a number of assumptions which were almost self-
evident in the early days of computing, but which are worth re-examination given our
design needs and the capabilities of our computing systems. These assumptions are listed
below. For the sake of clarity, I have to stress that I believe that these assumptions are
wrong, even though they are cornerstones of our current thinking and underlie practically
all software engineering research. They are also contrary to the needs of IP.

1. Programs should be expressed in unambiguous languages with syntax and names.
I will not spend time on this, since it takes a long time arguing against it and it is
not strictly necessary to win this argument. But I will point out that replacing
syntax with projections and replacing (or rather augmenting) names with
identities goes a long way to make the solutions for the other key problems
practical. Conversely, hanging onto these old ideas that in their bases are related

to paper tape and punched cards issues, seriously retards progress in software
engineering.

2. Languages should be simple. This has really been post- facto reasoning, insofar as

language definition has been so difficult and language learning has been so
unrewarding that there has been always a powerful incentive for the creators as
well as the user of languages to keep the languages simple. On the definition side,
the difficulties had to do with the need for precise definition (which is the next
item) and the need for providing unambiguous and user-friendly syntax for
constructs (which was the previous item.) For the users, the learning of new
languages is a nearly meaningless chore: new ideas are few and far between and
most of what is called “learning” is to re-discover common design patterns using
the terms of the language to be learned – which activity is made difficult because
this is not part of any documentation and because there isn’t a reference meta-
language in which the design patterns could be identified. In a new language,
trivial things like loops may become an object of concern for somebody who has
just learned the language – let’s see, how does one loop N times in this idiom?
The creation of an iterator may become a design problem even for an
“experienced” programmer.

The goal of simplicity is to save effort in some dimension. But there is no a priori
argument that a simple language saves total effort, just like a simple toolbox may
not help with a repair job, or a simple airplane is not necessarily a reliable
airplane. More likely, a simple language simply displaces effort into the “user
realm”, where a large number of arbitrary names and arbitrary design patterns
create an incredible obstacle to software sharing, to program understanding, and
to mechanical reasoning about the program. But these horrendous costs are
thought to be natural, and can be somehow attributed to the programmers, to the
problem or the problem domain, not to the language.

3. Language semantics should be precisely defined. At some level this should be

unobjectionable – but if we look at what was meant operationally by this we can
see that it is a snare. The point is that we should reserve precision for expressing
the stakeholders’ concerns – and here precision means something different than
exactness since, as we shall see, stakeholders often do not have exact concerns.
They have general concerns. Being more “precise” than the intention of the
stakeholder is in fact an act of “imprecision”, so simply demanding “precision”
can be frequently an oxymoron.

We should have a large distinct vocabulary in which to express the concerns
precisely. There is no need to be too precise about the implementation of these
concerns, in fact such precision is detrimental to the value of the program. A few
analogies might help: “I have a date with partner P to see “Magic Flute”” is less
precise, but more intentional than a set program, such as “At time T1: Goto
apartment at address A(P); ring bell; say hello; goto theater O1 /* Magic Flute
playing */; present tickets K1, K2; wait until T2; etc. etc.” Note the comment: the

real payload is usually contained in comments in conventional programs.

From mechanical engineering: we might say: “the piston is to fit the cylinder”
instead of saying that “piston.diameter = 4.999”.

In both examples the second version is arguably more precise, but clearly less
useful for all purposes except maybe from the point of view of the processor that
executes the implementation. After all, to implement the date, some specific
actions will have to take place, for example the bell may have to be pressed (but
not necessarily.) Similarly, at the end of the day the piston will have to have some
diameter (but not necessarily 4.999, whatever that is – a real measurement would
have units and tolerances also specified.) Effectively, we have been optimizing
our software efforts for the benefit of the transformers, the compilers, instead of
our human selves.

We can see that the intentional expression already subsumes “cross cutting” aspects,
insofar as they are inherent in the intention. The idea of a “ticket” no longer shows up in
some “present ticket” statement but can be an integral part of the “performance” of which
“Magic Flute” is an instance. The connection between the cylinder and the piston is not
some aspect that needs to be discovered, but an integral part of the model (and as Gregor
says, the model is the program). If we wanted to change, parameterize, prove theorems,
quote, adapt, handle error conditions, improve implementation, tune ; we can do all of
those easier with the intentional version, and in fact that is why real life is so resilient, for
example if my partner works late and goes directly to the opera where we meet. In that
case, the conventional program would have to change completely, but the intentional
expression remains the same. Of course the transformer would have to “know” about the
alternate implementation.

Which brings us to a key issue: how did the transformers learn about the intentions – the
concepts of “dates”, “operas”, “tickets”, “fitting” and so on? Well, there is no free lunch.
Intentional programming does not save total initial effort – it merely re- factors it. The
specs, the comments, and some of the code are expressed as IP source, while the
implementation details are expressed as transformations. Arguably, writing
transformations is harder than writing code although this is not clearly so and the cost
differential is probably a wash. One way to look at this is that writing a transformation
that creates implementation X is like writing ‘printf(“X”)’. The benefits start to accrue
when the intentional code is changed, shared, or reasoned about, or if the implementation
is improved – because the transformation can be re-executed mechanically. We can also
see how the cross-cutting concerns are expressed: they appear as parts of the transformer.
Indeed, the transformer may be as “messy” as the traditional program would have been,
except that it can be re-executed with new parameters, or the transformations can be
changed to change the implementation – while the parameters are kept constant.

The re- factoring of the program into an intentional specification and a transformer with
the implementation information also means that the skills of the people are factored and
greater specialization is enabled.

Today we are facing a crisis of personnel. First, we do not have enough software
engineers. Second, the software engineers are not sufficiently skilled in various problem
domains, such as human factors, or flight dynamics. But this crisis is created by our
insistence that programmers write programs. We have sufficient number of people skilled
in human factors or flight dynamics – they just can not program real-time Ada.
Conversely, if programmers did not have to worry about the human factors or flight
dynamics, there would be much fewer of them needed.

The most bizarre manifestation of this waste is the notion of “HTML programmers”.
These unfortunate individuals are human transformers of very simple layout intentions
into the machine code of the web, namely Html. They are not unlike the “computers”, as
defined in pre-WW 2 dictionaries which were human clerks performing computation
whether by hand or by some mechanical help. Of course practically all programmers
today spend some of their time doing transformations – the transformation from an
implicit or explicit spec or understanding of the model into an executable
implementation.

Under IP, domain experts write models/specs/programs in domain terms. Programmers
write transformers that transform the domain terms into machine implementations. There
is no repetitive work – or rather the repetitive work is done mechanically. When specs
change – requirements change, parameters change, or the specs are in error, the
transformation is re-executed. When implementation is changed, the work is done once to
the transformer, and then the specs are re-transformed mechanically.

The bifurcation of domain expert and programmer can repeat in a fractal fashion: some
domain experts might provide transformations for domain implementation (for example
the different kinds of date scenarios or the different forms of fitting machine parts.) Other
domain experts might be “end users” who actually go on dates or actually fit parts
together. Yet others could create powerful abstractions for the writing of transformers. So
a programmer would be just another domain expert, someone who focuses on the
application of abstract computer science: sorting, searching, numerical algorithms, real
time concerns, machine architecture exploitation, graphics algorithms, etc.

Miscellaneous FAQ

By reductio ad absurdum, why couldn’t the program simply consist of a single node
embodying the totality of the stakeholders’ concerns? For example, to develop a
spreadsheet, one would say “Excel”, which would be absurd – it would just move the
Excel development work into the transformer (under the “printf”).

There are two answers. The less interesting one is that such a primitive intention
is not entirely useless, especially if it can be parameterized. But more
interestingly, stakeholders typically have fairly specific ideas of what would
satisfy them – this is not unlike how one talks to an architect about a new family
house to be built. One does not simply say “house” to the architect – one needs

many hours of discussions and many pages of correspondence – some of which
very appropriately is called the owner’s “program” for the house. The size of the
vocabulary properly depends on the scope of the stakeholders’ concerns. One can
see that an airport authority would probably have a more complicated discussion
with an architect than someone interested in erecting a trailer home.

 What are multiple views?

For example Gregor Kiczales writes:
A central idea in all science and engineering [is] the idea of working with a
system through multiple perspectives or views.

This is important and needs to be clarified. A program will have three manifestations:
lets call them content, notation, and implementation. At any moment content is
unique, but there may be several notations and implementations mechanically derived
from the content. “Multiple perspectives” is a valid concept for the content – meaning
that programs should record relevant organization and design choices in many
different aspects – hence AOP – and it is also a valid concept for notations. However
these are different ideas – the former is more basic – and less obvious – while the
latter, the notations, are simpler. A perfectly workable system can be developed with
just one notation – for example LISP or XML – but for practical purposes, multiple
notations will be a must to enable the human programmer to interact with (to read and
to edit) the program contents.
The best example of this distinction can be found in CAD systems where both of
these principles are readily and naturally accepted. Systems of extreme complexity –
to wit a Boeing 777 airliner – are successfully created, edited, proved partially
correct, and realized in an implementation – using an Integrated Development
Environment. In this case the IDE is called CATIA – and the best part is that there is
no CATIA “language”, and certainly there are no time-consuming arguments about
the “syntax” of the CATIA “language”. Engineers simply use the system to encode
those aspects of the artifact (the airplane) that is important to them and which they
can make use of. The issue of notation (how an aspect looks on the display for
interaction) is not of primary importance and it has never been a problem. For
example, let’s take fluid temperature within a pipe. If this is important – for example
it would be used to test compatibility of materials, or heat loads in compartments –
the data can be added to the database without any problems. If the temperature has a
gradient, that can be added also – it just means that there would be more properties
added to the description of the pipe. What is the syntax for this new statement? To
input it, a GUI property sheet may be used. To display it, a range of colors might
indicate the approximate temperature of the pipes. What if the colors are already used
to show pressure? Perhaps a display mode could switch between the displays of the
temperatures and the pressures – neither projection is complete, neither precise, but it
could be still convenient and useful.

Note that the “syntax” for the input and for the display can be different – to specify a
temperature seems to be different from viewing it. The input method and the viewing

method can change – improve globally or adapt to local conditions - without
disturbing the “contents”. This is in complete contrast with text-based computer
languages, where syntax is held in high reverence and is integral to the integrity of the
sources.

Why not separate concerns by hiding them in modules?
I once had a very fruitful discussion with Prof. Parnas on this. Parnas started by
claiming that one could separate any concern into its own module and then, by
definition, we should have perfect separation of concerns. This is undeniable, but
we have to ask: what will these modules contain – that is how are the concerns
encoded? Indeed, at the limit, the modules must contain a direct identification, in
data form, of the concern represented, possibly with parameters that would have
to be in their own modules and so on. Effectively, the program would be a
massive tree of nodes, each node a module, or a reference to a module – in other
words an Intentional Program Tree. To set the program into motion, one has to
add some sort of interpreter or compiler or transformer to this mess, but that is not
properly part of the problem expression but a resource shared among programs.
The point was that when the all concerns are separated, “modules” become so
small that they are more like operator instances or operand instances in traditional
languages and most information will encoded in the relationships between the
nodes, rather than in the nodes (modules) themselves. So in this extreme sense,
there is no conflict between Intentional program expression and traditional
modularity.
Similarly, there is no conflict and there is a more natural kinship between AOP
and Intentional Programming (IP).
So why aren’t modules used this way? The above argument of course does not
describe anything practical. The notation would be terrible and also it presupposes
the existence of a transformer. Providing for the flexible notation and for the
transformational phase is what makes IP a capital- intensive proposition.

